Distribution of synaptic zinc in the macaque monkey amygdala.
نویسندگان
چکیده
We have mapped the macaque amygdala for the distribution of synaptic zinc (Zn), a co-factor of glutamate implicated in plasticity, as well as in several excitotoxic and other pathophysiological conditions. In brief, we found that the amygdala is Zn enriched in all nuclear groups (i.e., basolateral and cortical groups, as well as central and medial nuclei) but with marked differences in density. By comparing parallel tissue series histologically reacted for Zn and parvalbumin (PV), we further found that regions high in Zn are typically low in PV neuropil. In the basolateral group, there is a particularly distinct dorsoventral gradation such that Zn levels are most dense ventrally, i.e., in the paralaminar nucleus, the ventral division of the lateral nucleus, and the parvicellular divisions of both the basal nucleus and the accessory basal nucleus. PV levels are least dense in these same regions. For the central and medial nuclei, there is a slight mediolateral gradient, with Zn levels being higher medially. PV is low overall in these nuclei. Electron microscopic results confirmed that Zn is contained in synaptic boutons. These form asymmetrical, presumably excitatory, synapses, and the postsynaptic targets are mainly spines of projection neurons. The inhomogeneous distribution of Zn in the monkey amygdala may be related to different types or degrees of plasticity among the amygdaloid subnuclei. The complementary distribution with PV parallels that of several other substances and is interesting in the context of subnuclear vulnerability for human neuronal disease, such as seizure and Alzheimer's disease.
منابع مشابه
Zinc-enriched amygdalo- and hippocampo-cortical connections to the inferotemporal cortices in macaque monkey.
Synaptic zinc (Zn), a co-factor in some glutamatergic synapses, has been implicated in plasticity effects, as well as in several excitotoxic and other pathophysiological conditions. In this study, we provide information about the distribution of Zn in inferotemporal cortex, a region at the interface of the visual and hippocampal networks. In brief, we found a lateral to medial increase in Zn, w...
متن کاملMyocardial Infarction in a Rhesus Monkey
Myocardial necrosis can be result from a number of causes including nutritional deficiencies, chemical and plant toxins, ischemia and metabolic disorder. The outcome of myocardial necrosis varies depending on the extent of the damage (Donald 2001, Jubb 1993, Radostits 1994, Vanvaleet 1986). Myocardial infarction without demonstrable of atherosclerosis were reported in a rhesus macaque (Gonder 1...
متن کاملRole of basal stress hormones and amygdala dimensions in stress coping strategies of male rhesus monkeys in response to a hazard-reward conflict
Objective(s): In the present study the effect of stress on monkeys that had learned to retrieve food from a five-chamber receptacle, as well as the relationship between their behavior and the serum cortisol and epinephrine levels and relative size of the amygdala was evaluated. Materials and Methods: Six male rhesus monkeys were individually given access to the food reward orderly. They could e...
متن کاملPathway-Specific Utilization of Synaptic Zinc in the Macaque Ventral Visual Cortical Areas
Synaptic zinc is an activity-related neuromodulator, enriched in hippocampal mossy fibers and a subset of glutamatergic cortical projections, exclusive of thalamocortical or corticothalamic. Some degree of pathway specificity in the utilization of synaptic zinc has been reported in rodents. Here, we use focal injections of the retrograde tracer sodium selenite to identify zinc-positive (Zn+) pr...
متن کاملEffect of Clenbuterol Administration into the Basolateral Amygdala on Synaptic Plasticity in Dentate Gyrus Granule Cells in Male Rats
Background and purpose: Neural circuits and neurotransmitter systems within the basolateral amygdala (BLA) play roles in forming emotional memory through communication with the hippocampus. Therefore, in this study, the role of these neural circuits on synaptic plasticity was investigated by agonist injection of beta-adrenergic receptors into the BLA. Materials and methods: In this experiment...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of comparative neurology
دوره 489 2 شماره
صفحات -
تاریخ انتشار 2005